An application of the refined Maslov-WKB technique to the one-dimensional Helmholtz equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 131957
(http://iopscience.iop.org/0305-4470/13/6/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 05:20

Please note that terms and conditions apply.

An application of the refined Maslov-WKB technique to the one-dimensional Helmholtz equation

A D Gorman $\dagger \ddagger, R$ Wells§ and G N Fleming \ddagger
\ddagger Applied Research Laboratory, \ddagger Department of Physics, \S Department of Mathematics, The Pennsylvania State University, State College, Pennsylvania 16801, USA

Received 30 October 1979

Abstract

A refinement of the Maslov-WKB technique is used to determine the full asymptotic series of a solution to the one-dimensional Helmholtz equation near a turning point.

1. Introduction

We use a refinement of the Maslov-WKB method (the Maslov-WKB method as explained by Duistermaat (1974) and Guillemin and Sternberg (1977, ch 2)) to determine the full asymptotic series of a solution to the one-dimensional Helmholtz equation near a turning point. We assume that the one-dimensional Helmholtz equation

$$
\begin{equation*}
\mathrm{d}^{2} \psi / \mathrm{d} x^{2}+\tau^{2} f(x) \psi(x)=0 \tag{1}
\end{equation*}
$$

(τ a large parameter, $f(x)$ a function invertible near the turning point x_{0}) has an asymptotic solution near the turning point of the form

$$
\begin{equation*}
\psi(x)-\int A(x, p, \tau) \exp [\mathrm{i} \tau(x p-S(p))] \mathrm{d} p=\mathrm{O}\left(\tau^{-\infty}\right) \tag{2}
\end{equation*}
$$

where $A(x, p, \tau)$ and its derivatives are uniformly bounded, and $S(p)$ is such that $x-\mathrm{d} S(p) / \mathrm{d} p=0$ determines the Lagrangian manifold of Maslov near the turning point (Eckmann and Seneor 1976). Then the eikonal, i.e.

$$
\begin{equation*}
|\nabla \phi|^{2}-f(x)=0, \tag{3}
\end{equation*}
$$

associated with (1) is given by Maslov's Hamiltonian (Guillemin and Sternberg 1977, p 72)

$$
\begin{equation*}
H=p^{2}-f(x) \tag{4}
\end{equation*}
$$

2. Hamilton's equations

$$
\dot{x}=\mathrm{d} H / \mathrm{d} p, \quad \dot{p}=-\mathrm{d} H / \mathrm{d} x
$$

define the Hamiltonian flow along Maslov's Lagrangian manifold with solution
$t=\int_{0}^{x(t)} \mathrm{d} \xi\left[4(f(\xi)-f(\theta))+p^{2}(\theta)\right]^{-1 / 2}, \quad p(t)=(f(x(t)))^{1 / 2}$,
where $\theta=x(0)$. The phase in the integral (2) is determined by noting

$$
\begin{aligned}
& x=f^{-1}\left(p^{2}\right)=\mathrm{d} S / \mathrm{d} p \\
& \therefore \quad S=\int_{p(\theta)}^{p} f^{-1}\left(p^{2}\right) \mathrm{d} p
\end{aligned}
$$

where the initial condition is determined from (5). Hence

$$
\phi=x p-S(p)
$$

The amplitude $A(x, p, \tau)$ is the solution of the associated transport equation which is determined by carrying the differentiation (1) across the integral (2), i.e.

$$
\begin{equation*}
\int \exp [\mathrm{i} \tau(x p-S(p))]\left[(\mathrm{i} \tau)^{2}\left(p^{2}-f(x)\right) A+2 \mathrm{i} \tau p \partial_{x} A+\partial_{x}^{2} A\right] \mathrm{d} p=\mathrm{O}\left(\tau^{-\infty}\right) \tag{6}
\end{equation*}
$$

The first term is Maslov's Hamiltonian (4). Expanding

$$
p^{2}-f(x)=p^{2}-f\left(\frac{\mathrm{~d} S}{\mathrm{~d} p}\right)+\left(x-\frac{\mathrm{d} S}{\mathrm{~d} p}\right) D(x, p)=\left(x-\frac{\mathrm{d} S}{\mathrm{~d} p}\right) D(x, p)
$$

where the remainder term is given by

$$
D(x, p)=D=-\int_{0}^{1} f\left(t\left(x-\frac{\mathrm{d} S}{\mathrm{~d} p}\right)+\frac{\mathrm{d} S}{\mathrm{~d} p}\right) \mathrm{d} t
$$

Substituting into (6),
$\int \exp [\mathrm{i} \tau(x p-S(p))] \mathrm{i} \tau\left[-D \partial_{p} A-A \partial_{p} D+2 p \partial_{x} A+(1 / \mathrm{i} \tau) \partial_{x}^{2} A\right] \mathrm{d} p=\mathrm{O}\left(\tau^{-\infty}\right)$,
which is the requirement that the asymptotic series in τ of the integral be trivial. Hence we require

$$
\begin{equation*}
-D \partial_{p} A+2 p \partial_{x} A-A \partial_{p} D+(1 / \mathrm{i} \tau) \partial_{x}^{2} A=0 \tag{8}
\end{equation*}
$$

in a neighbourhood of the Lagrangian manifold (Guillemin and Sternberg 1977, p 18). Equation (8) leads to a transport equation in such a neighbourhood if we introduce the flow

$$
\begin{equation*}
\dot{x}=2 p, \quad \dot{p}=-D(x, p) \tag{9}
\end{equation*}
$$

(Gorman and Wells 1980). Equation (8) will hold in such a neighbourhood if we allow the asymptotic series

$$
A(x, p, \tau)=\sum_{k} A_{k}(x, p)(\mathrm{i} \tau)^{-k}
$$

to evolve according to the transport equation

$$
\begin{equation*}
\dot{A_{k}}-A_{k} \partial_{p} D+\partial_{x}^{2} A_{k-1}=0 \tag{10}
\end{equation*}
$$

along the trajectories of (9). (Notice that, in general, the flow (9) is not the Hamiltonian flow.)

The full asymptotic series of the integral (2) is determined as the sum of the asymptotic series of integrals whose phase ϕ and amplitude A_{k} are determined above, i.e.

$$
\int \exp [\mathrm{i} \tau(x p-S(p))] A(x, p, \tau) \mathrm{d} \tau \sim \sum_{k} \int \exp [\mathrm{i} \tau(x p-S(p))] A_{k}(x, p)(\mathrm{i} \tau)^{-k} \mathrm{~d} p
$$

3. The coordinate transformations

At turning points (x_{1}, p_{1}), where

$$
x_{1}-\mathrm{d} S\left(p_{1}\right) / \mathrm{d} p=0, \quad \mathrm{~d}^{2} S\left(p_{1}\right) / \mathrm{d} p_{1}^{2} \neq 0
$$

the transformation

$$
\begin{aligned}
y=\left(p-p_{1}\right) \frac{1}{2} & \phi_{p}^{\prime \prime} \\
& \left(x_{1}, p_{1}\right) \\
& +\frac{1}{6}\left(p-p_{1}\right) \phi_{p}^{\prime \prime \prime}\left(x_{1}, p_{1}\right)+\ldots+(1 / k!)\left(p-p_{1}\right)^{k-2} \phi_{p}^{k}\left(x_{1}, p_{1}\right)+\left.\ldots\right|^{1 / 2}
\end{aligned}
$$

transforms the integral

$$
\int \exp \left(\mathrm{i} \tau \phi\left(x_{1}, p\right)\right) A_{k}\left(x_{1}, p\right) \mathrm{d} p
$$

to

$$
\int \exp \left[i \tau\left(\phi\left(x_{1}, p_{1}\right) \pm y^{2}\right)\right] g\left(x_{1}, y\right) d y
$$

Here the non-constant exponential argument is now in normal (quadratic) form and $g\left(x_{1}, y\right)=\Sigma_{m} C_{m}\left(p_{1}\right) y^{m}$, where

$$
C_{m}\left(p_{1}\right)=-\frac{1}{2 \pi^{2}} \iint \frac{A_{k}\left(x_{1}, p+p_{1}\right) \mathrm{d} \xi \mathrm{~d} p}{\xi^{m} p^{m-1}\left(\xi^{2} p^{2}-\phi\left(x_{1}, p+p_{1}\right)+\phi\left(x_{1}, p_{1}\right)\right)}
$$

and the sign of $\pm y^{2}$ is the sign of $\phi_{p}^{\prime \prime}\left(x_{1}, p_{1}\right)$.
$\therefore \quad \int \exp (\mathrm{i} \tau \phi(x, y)) A_{k}(x, p) \mathrm{d} p=\exp \left(\mathrm{i} \tau \phi\left(x_{1}, p_{1}\right)\right) \int \exp \left(\mathrm{i} \tau y^{2}\right) \sum_{m} C_{m}\left(p_{1}\right) y^{m} \mathrm{~d} y$,
where, for clarity, it is assumed $\phi_{p}^{\prime \prime}\left(x_{1}, p_{1}\right)>0$. The asymptotic series of this last integral is determined using the stationary phase technique (Duistermaat 1973, p 23):

$$
\begin{align*}
& \int \exp \left(\frac{\mathrm{i} \tau \theta(a) y^{2}}{2}\right) g(y, a, \tau) \mathrm{d} y \\
& \left.\quad \sim\left(\frac{2 \pi}{\tau}\right)^{1 / 2}|\theta(a)|^{-1 / 2} \exp \left(\mathrm{i} \frac{\pi}{4} \operatorname{sgn} \theta(a)\right) \sum_{l=0}^{\infty} \frac{1}{l!} D^{l} g(y, a, \tau)\right|_{y=0} \tau^{-l} \tag{11}
\end{align*}
$$

where $\theta(a)$ is non-singular, depending continuously on a, and

$$
D=\frac{\mathrm{i}}{2 \theta(a)} \frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}}
$$

Applied to the above, for any \boldsymbol{A}_{k}

$$
\begin{aligned}
& \int \exp \left(\mathrm{i} \tau \phi\left(x_{1}, p\right)\right) A_{k}\left(x_{1}, p\right) \mathrm{d} p \\
& \qquad\left(\frac{\pi}{\tau}\right)^{1 / 2} \exp \left[\mathrm{i} \tau\left(\frac{\pi}{4}+\phi\left(x_{1}, p_{1}\right)\right)\right] \sum_{l=0}^{\infty} \frac{1}{l} \frac{\mathrm{i}^{l}(2 l)!C_{2 l}\left(p_{1}\right) \tau^{-l}}{4^{l}} \\
& \quad \therefore \int \exp (\mathrm{i} \tau \phi(x, p)) A(x, p, \tau) \mathrm{d} p \sim \sum_{k=0}^{\infty}(\mathrm{i} \tau)^{-k} \int \exp (\mathrm{i} \tau \phi(x, p)) A_{k}(x, p) \mathrm{d} p
\end{aligned}
$$

At turning points (x_{0}, p_{0}), where
$x_{0}-\mathrm{d} \boldsymbol{S}\left(p_{0}\right) / \mathrm{d} p=0, \quad \mathrm{~d}^{2} \boldsymbol{S}\left(p_{0}\right) / \mathrm{d} p^{2}=0, \quad \mathrm{~d}^{3} \boldsymbol{S}\left(p_{0}\right) / \mathrm{d} p^{3} \neq 0$,
the transformation

$$
\begin{array}{r}
y=\left.\left(p-p_{0}\right)\right|_{6} ^{1} \phi_{p}^{\prime \prime \prime}\left(x_{0}, p_{0}\right)+\frac{1}{24}\left(p-p_{0}\right) \phi_{p}^{\prime \prime \prime \prime}\left(x_{0}, p_{0}\right)+\ldots \\
\\
+(1 / n!)\left(p-p_{0}\right)^{n-3} \phi_{p}^{n}\left(x_{0}, p_{0}\right)+\left.\ldots\right|^{1 / 3}
\end{array}
$$

transforms the integral

$$
\int \exp (\mathrm{i} \tau \phi(x, p)) A_{k}(x, p) \mathrm{d} p
$$

to

$$
\exp \left(\mathrm{i} \tau \phi\left(x_{0}, p_{0}\right)\right) \int \exp \left(\pm \mathrm{i} \tau y^{3}\right) h\left(x_{0}, y\right) \mathrm{d} y
$$

Here the exponential argument within the integral is the Thom fold, $h\left(x_{0}, y\right)=$ $\Sigma_{n} C_{n}\left(p_{0}\right) y^{n}$, where

$$
C_{n}\left(p_{0}\right)=-\frac{1}{2 \pi^{2}} \iint \frac{A_{k}\left(x_{0}, p+p_{0}\right) \mathrm{d} \xi \mathrm{~d} p}{\xi^{n} p^{n-1}\left(\xi^{3} p^{3}-\phi\left(x_{0}, p+p_{0}\right)+\phi\left(x_{0}, p_{0}\right)\right)},
$$

and the sign of $\pm y^{3}$ is the sign of $\phi_{p}^{\prime \prime \prime}\left(x_{0}, p_{0}\right)$.

$$
\therefore \quad \int \exp (\mathrm{i} \tau \phi(x, p)) A_{k}(x, p) \mathrm{d} p=\exp \left(\mathrm{i} \tau \phi\left(x_{0}, p_{0}\right)\right) \int \exp \left(\mathrm{i} \tau y^{3}\right) h\left(x_{0}, y\right) \mathrm{d} y
$$

where, for clarity, it is assumed $\phi_{p}^{\prime \prime \prime}\left(x_{0}, p_{0}\right)>0$.
We define an operator $I(\tau)$ which carries functions $h(y)$ (which are bounded together with all their derivatives) to asymptotic series in $1 / \mathrm{i} \tau$:

$$
I(\tau) h(y)=\int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) h(y) \mathrm{d} y
$$

where we regard the integral as denoting its asymptotic series expansion as $\tau \rightarrow \infty$. Notice

$$
\begin{aligned}
\int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) & h(y) \mathrm{d} y \\
= & \alpha_{0}(h) \int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) \mathrm{d} y+\alpha_{1}(h) \int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) y \mathrm{~d} y \\
& +\int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) \frac{y^{2}}{3} R h(y) \mathrm{d} y
\end{aligned}
$$

where the last integral converges since the other three do, and where $\alpha_{0}(h)=h(0)$, $\alpha_{1}(h)=h^{\prime}(0)$ and

$$
R h(y)=3\left(\frac{h(y)-h(0)-h^{\prime}(0) y}{y^{2}}\right)
$$

or alternatively

$$
R h(y)=3 \int_{0}^{1} \int_{0}^{1} h^{\prime \prime}(t s y) t \mathrm{~d} t \mathrm{~d} s
$$

Integrating by parts,

$$
\int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) \frac{y^{2}}{3} R h(y) \mathrm{d} y=-\frac{1}{\mathrm{i} \tau} \int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) \frac{\mathrm{d}(R h(y))}{\mathrm{d} y} \mathrm{~d} y
$$

(Notice that, if $h(y)$ is bounded, so are $\mathrm{d}(R h(y)) / \mathrm{d} y$ and all its derivatives (Guillemin and Sternberg 1977, pp 5-6).)

Define an operator T by

$$
\begin{align*}
& T h(y)=\mathrm{d}(R h(y)) / \mathrm{d} y . \\
& \therefore \quad I(\tau) h(y)=\alpha_{0}(h) J_{0}(\tau)+\alpha_{1}(h) J_{1}(\tau)-(1 / \mathrm{i} \tau) I(\tau) T h(y), \tag{12}
\end{align*}
$$

where

$$
J_{i}(\tau)=\int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) y^{j} \mathrm{~d} y, \quad j=0,1
$$

are determined by contour integration:

$$
J_{0}(\tau)=\frac{2}{3} \tau^{-1 / 3} \Gamma\left(\frac{1}{3}\right) \cos \frac{1}{6} \pi, \quad J_{1}(\tau)=\frac{2}{3} \mathrm{i} \tau^{-2 / 3} \Gamma\left(\frac{2}{3}\right) \sin \frac{1}{3} \pi
$$

Now we may write (12) as

$$
I(\tau)[1+(1 / \mathrm{i} \tau) T]=J_{0}(\tau) \alpha_{0}+J_{1}(\tau) \alpha_{1}
$$

where 1 is the identity operator, and α_{0} and α_{1} are operators carrying functions to constants. When dealing with formal power series, the operator $1+(1 / \mathrm{i} \tau) T$ has the (right) inverse $\sum_{l=0}^{\infty}(-\mathrm{i} \tau)^{-i} T^{l}$.

$$
\therefore \quad I(\tau)=\left(J_{0}(\tau) \alpha_{0}+J_{1}(\tau) \alpha_{1}\right)\left(\sum_{l=0}^{\infty}(-\mathrm{i} \tau)^{-l} T^{l}\right)
$$

hence

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \exp \left(\mathrm{i} \tau y^{3}\right) h(y) \mathrm{d} y \\
& \quad=\left.J_{0}(\tau) \sum_{l=0}^{\infty}(-\mathrm{i} \tau)^{-l} T^{\prime} h(y)\right|_{y=0}+\left.J_{1}(\tau) \sum_{l=0}^{\infty}(-\mathrm{i} \tau)^{-l} \frac{\mathrm{~d}}{\mathrm{~d} y}\left(T^{l} h(y)\right)\right|_{y=0}
\end{aligned}
$$

$\therefore \quad \int \exp (\mathrm{i} \tau \phi(x, y)) A_{k}(x, p) \mathrm{d} p$

$$
\begin{aligned}
& \sim \exp \left(\mathrm{i} \tau \phi\left(x_{0}, p_{0}\right)\right)\left(\left.J_{0}(\tau) \sum_{i=0}^{\infty}(-\mathrm{i} \tau)^{-l} T^{i} h(y)\right|_{y=0}\right. \\
& \left.\quad+\left.J_{1}(\tau) \sum_{i=0}^{\infty}(-\mathrm{i} \tau)^{-l} \frac{\mathrm{~d}}{\mathrm{~d} y}\left(T^{l} h(y)\right)\right|_{y=0}\right)
\end{aligned}
$$

and

$$
\int \exp (\mathrm{i} \tau \phi(x, p)) A(x, p, \tau) \mathrm{d} p \sim \sum_{k}(\mathrm{i} \tau)^{-k} \int \exp (\mathrm{i} \tau \phi(x, p)) A_{k}(x, p) \mathrm{d} p
$$

4. Example

If in (1) $f(x)$ is linear, then the flow (9) is identical with that of Maslov. If, however,

$$
f(x)=E-x^{2},
$$

the Hamiltonian (4) becomes

$$
H=p^{2}+x^{2}-E,
$$

and (5) becomes explicitly (with $\phi=\nu \cos \gamma_{0}$, to deal with a point source of radiation)

$$
\begin{aligned}
& x(\nu, t)=\alpha \nu \cos 2 t+\beta \nu \sin 2 t=\nu \cos \left(\gamma_{0}-2 t\right) \\
& p(\nu, t)=-\alpha \nu \sin 2 t+\beta \nu \cos 2 t=\nu \sin \left(\gamma_{0}-2 t\right)
\end{aligned}
$$

where $(\alpha, \beta)=\left(\cos \gamma_{0}, \sin \gamma_{0}\right)$ and $\nu=E^{1 / 2}$. From

$$
\begin{aligned}
& x=\left(E-p^{2}\right)^{1 / 2}=\mathrm{d} S / \mathrm{d} p \\
& \phi(x, p)=x p-\frac{1}{2}\left[E \sin ^{-1}\left(p / E^{1 / 2}\right)+p\left(E-p^{2}\right)^{1 / 2}\right]
\end{aligned}
$$

The stationary phase condition $\partial \phi / \partial p=0, \partial^{2} \phi / \partial p^{2} \neq 0$ determines that, at all $x=$ $\left(E-p^{2}\right)^{1 / 2}, p \neq 0$, the method of stationary phase applies. At $p=0, \partial^{2} \phi / \partial p^{2}=0$, but $\partial^{3} \phi / \partial p^{3} \neq 0$. From (9)

$$
D=-\dot{p}=-x-\left(E-p^{2}\right)^{1 / 2}
$$

and hence the transport equation (10) becomes

$$
\begin{equation*}
\dot{A_{k}}-A_{k} \partial_{p}\left[-x-\left(E-p^{2}\right)^{1 / 2}\right]+\partial_{x}^{2} A_{k-1}=0 . \tag{13}
\end{equation*}
$$

The most general solution is

$$
A_{0}=\mathrm{fcn}\left\{\left[x+2\left(E-p^{2}\right)^{1 / 2}\right]^{1 / 3}\left[x-\left(E-p^{2}\right)^{1 / 2}\right]^{2 / 3}\right\}\left[x+2\left(E-p^{2}\right)^{1 / 2}\right] .
$$

For $p \neq 0$, the asymptotic series of

$$
\int \exp (\mathrm{i} \tau \phi(x, p)) \boldsymbol{A}_{0}(x, p) \mathrm{d} p
$$

is determined from (11); for $p=0$, the asymptotic series is determined from (12). Solving the transport equation for additional \boldsymbol{A}_{k} 's determines additional integrals, the sum of whose asymptotic expansions determines the full asymptotic expansion of

$$
\int A(x, p) \exp (\mathrm{i} \tau \phi(x, p)) \mathrm{d} p
$$

Acknowledgment

One of us (ADG) wishes to acknowledge the sponsorship of the US Navy Sea Systems Command, SEA 63R-1.

References

Duistermaat J J 1973 Fourier Integral Operators (New York: Courant Institute)
1974 Comm. Pure Appl. Math. 27 207-81
Eckmann J P and Seneor R 1976 Arch. Rat. Mech. Anal. 61 153-73
Gorman A and Wells R 1980 Q. Appl. Math.
Guillemin V and Sternberg S 1977 Geometric Asymptotics (Providence, RI: American Mathematical Society)

