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An application of the refined Maslov-WKB technique to 
the one-dimensional Helmholtz equation 
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The Pennsylvania State University, State College, Pennsylvania 16801, USA 
Applied Research Laboratory, j Department of Physics, 0 Department of Mathematics, 

Received 30 October 1979 

Abstract. A refinement of the, Maslov-WKB technique is used to determine the full 
asymptotic series of a solution to the one-dimensional Helmholtz equation near a turning 
point. 

1. Introduction 

We use a refinement of the Maslov-WKB method (the Maslov-WKB method as 
explained by Duistermaat (1974) and Guillemin and Sternberg (1977, ch 2)) to 
determine the full asymptotic series of a solution to the one-dimensional Helmholtz 
equation near a turning point. We assume that the one-dimensional Helmholtz 
equation 

( T  a large parameter, f(x) a function invertible near the turning point xo) has an 
asymptotic solution near the turning point of the form 

d2$/dx2+ ~~f(x)$(x) = 0 (1) 

44x1 - A(x, p ,  T )  exp[i.r(xp - S(p)) l  dp = 0(7-Oo), (2) 

where A(x, p ,  T )  and its derivatives are uniformly bounded, and S ( p )  is such that 
x - dS( p)/dp = 0 determines the Lagrangian manifold of Maslov near the turning point 
(Eckmann and Seneor 1976). Then the eikonal, i.e. 

(3) 

I 

IVd l 2  -f(x) = 0,  

H = p 2  -f(x). (4) 

associated with (1) is given by Maslov’s Hamiltonian (Guillemin and Sternberg 1977, p 
72) 

2. Hamilton’s equations 

f = dE/dp, 0 = -dH/dx 

define the Hamiltonian flow along Maslov’s Lagrangian manifold with solution 
X i 0  

t = I,, dt[4(f( t )  -m)) +p2(e)i-1/2,  p ( t )  = ( f ( X ( t ) ) P ” ,  ( 5 )  
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where 6 = x(0). The phase in the integral (2) is determined by noting 

x = f-'(p2) = dS/dp; 

where the initial condition is determined from ( 5 ) .  Hence 

4 =xp-S(p) .  

The amplitude A(x, p ,  7 )  is the solution of the associated transport equation which is 
determined by carrying the differentiation (1) across the integral ( 2 ) ,  i.e. 

I exp[i.r(xp -S(p))][(i7)'(p2-f(x))A +2i7p 8,A +$A] dp = 0(7-Oo). (6) 

The first term is Maslov's Hamiltonian (4). Expanding 

where the remainder term is given by 

Substituting into (6), 

1 exp[iT(xp -S(p))]i.r[-D 8 4  - A  a p + 2 p  8,A +( l / i7 )  $A] dp = 0 ( ~ - ~ ) ,  (7) 

Which is the requirement that the asymptotic series in 7 of the integral be trivial. Hence 
we require 

-D 8 4  + 2 p  a,A - A  ap + ( l / i7)  $A = 0 (8) 

in a neighbourhood of the Lagrangian manifold (Guillemin and Sternberg 1977, p 18). 
Equation (8) leads to a transport equation in such a neighbourhood if we introduce the 
flow 

x = 2p ,  ri = - D b ,  p )  (9) 

(Gorman and Wells 1980). Equation (8) will hold in such a neighbourhood if we allow 
the asymptotic series 

~ ( x ,  P ,  7 )  = C Akk ,  p)(ir)-k 
k 

to evolve according to the transport equation 

A, - Ak a$ -I- a:Ak-l= 0 (10) 

along the trajectories of (9). (Notice that, in general, the flow (9) is not the Hamiltonian 
flow.) 
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The full asymptotic series of the integral (2) is determined as the sum of the 
asymptotic series of integrals whose phase 4 and amplitude Ak are determined above, 
i.e. 

3. The coordinate transformations 

At turning points (xl, pl), where 

transforms the integral 

Here the non-constant exponential argument is now in normal (quadratic) form and 
g b i ,  Y)=L Cm(p1)Ym, where 

and the sign of *yz  is the sign of 4:(xl, pl). 

:. exp(iT4(x, Y))&(x, P) dp = exp(iT4(xl, PI)) exp(i7y2) Cm(pl)ym dy, 

where, for clarity, it is assumed 4: (XI, PI) > 0. The asymptotic series of this last integral 
is determined using the stationary phase technique (Duistermaat 1973, p 23): 

m 

where e(a)  is non-singular, depending continuously on a, and 

i d2 D=-- 
20(a)  dy2*  
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and the sign of * y 3  is the sign of 4F(xo, p o ) .  

where, for clarity, it is assumed 4; (xo, p o )  > 0. 

together with all their derivatives) to asymptotic series in l / i T :  

We define an operator 1 ( r )  which carries functions h ( y )  (which are bounded 

where we regard the integral as denoting its 
NQtice 

I_, exp(iv3)h(y)  dy 
m 

asymptotic series expansion as r + 00. 
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where the last integral converges since the other three do, and where cuo(h) = h(O), 
a l (h )  = h‘(0) and 

or alternatively 

R h ( y ) = 3  Ill’ hff(rsy)tdt ds. 
0 0  

Integrating by parts, 
m 2 OD 

3 -m 

3 Y  
exp(i.ry )--Rh(y) dy = -1 lT  exp(i7y3) 

(Notice that, if h(y) is bounded, so are d(Rh(y))/dy and all its derivatives (Guillemin 
and Sternberg 1977, pp 5-.6).) 

Define an operator T by 

Th(y) = d(-Rh(y))/dy. 

.‘. I (T)~(Y)  = no(h)JOo(.r)+al(h)Jl(T)-(l / iT)I(T)Th(y),  (12) 
where 

CO 

J ; (T )  = exp(i7y’)y’ dy, j = O ,  1, 1- m 

are determined by contour integration: 

.T*(T) = $iT-2’3r($) sin fr. 1 
Jo(7) = $ T - 1 ’ 3 r ( f )  COS gi7, 

Now we may write (12) as 

I (  T ) [  1 + (1 /ir) TI = J o ( ~ ) a o  + J I  (.)a I ,  

where 1 is the identity operator, and cyo and a1 are operators carrying functions to 
constants. When dealing with formal power series, the operator 1 + (l/iT)T has the 
(right) inverse Xz0 (--iT)-’Tf. 

d m OD 

=JO(7)  (-iT)-fTfh(y)l +J1(7) 1 (-iT)-f-(Tfh(y))l y = o  . 
f =o y = o  f = O  dY 
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and 

4. Example 

If in (1) f(x)  is linear, then the flow (9) is identical with that of Maslov. If, 
however, 

f(x) = E - x2, 

the Hamiltonian (4) becomes 

H = p2+x2-  E, 

and (5) becomes explicitly (with 4 = v cos yo, to deal with a point source of radiation) 

x ( v ,  t ) = a v c o s 2 t + p v s i n 2 t = v c o s ( y o - 2 t ) ,  

p ( v ,  t) = - a y  sin 2 t + p v  cos 2t = Y sin(yo-2t), 

where (a ,  p )  = (cos yo, sin yo) and v = E’/’. From 

x = ( E  - p 2 ) ’ / 2  = dS/dp, 

d (x ,p )  = x p - & ~  s i n - ’ ~ p / ~ ’ ” ) + p ( ~ - p ~ ) ~ / ~ I .  

The stationary phase condition a $ J / a p  = 0, a24/ap2 # 0 determines that, at all x = 
( E  - p 2 ) ’ l 2 ,  p # 0, the method of stationary phase applies. At p = 0, d2$J /ap2  = 0, but 
a 3 4 / a p 3  # 0. From (9) 

D = -0 = -x - ( E  -p2)1 /2  

A, -Ak a,[-X - (E-P2)1/2]+a~Ak_l=0.  (13) 

7 

and hence the transport equation (10) becomes 

The most general solution is 
2 1/2 1/3 2 1 / 2  2/3  Ao=fcn{[x+2(E-p ) ] [ x - ( E - p  ) ] } [ ~ + 2 ( E - p ’ ) ~ / ~ ] .  

is determined from (11); for p = 0, the asymptotic series is determined from (12). 
Solving the transport equation for additional Ak’s determines additional integrals, the 
sum of whose asymptotic expansions determines the full asymptotic expansion of 
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